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Abstract

In this paper two approximate analytical methods for solving strong non-linear differential equations
with complex functions are developed. Besides the adopted elliptic Krylov–Bogolubov procedure, an
alternative analytical method based on the variation of the parameters as well as the elliptic Krylov–
Bogolubov is introduced. The difference is that the alternative method considers two approximate first
order differential equations. The suggested procedures are compared and tested for the system with strong
cubic non-linearity and a small non-linearity of Van der Pol type. Comparing the approximate analytical
solutions with exact numerical solution it is concluded that the difference is negligible.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

There are a few papers dealing with the problem of analytical approximate solving procedures
of the non-linear differential equation with complex function. In most of the papers the non-
linearity is small and the known approximate analytical procedures developed for a second order
differential equation with small non-linearity are adopted for this special type of two coupled
second order differential equations [1–5]. In Refs. [6,7] an extension of the solving procedure is
presented considering the systems with strong cubic non-linearity. Based on the solving methods
developed for the one-degree-of-freedom Duffing equation, new methods for obtaining the
approximate analytical solution for the differential equation with complex function and cubic
non-linearity are tested. In Ref. [8] the class of non-linear differential equations with complex
function is extended and new types of cubic non-linearity are introduced. In Refs. [9,10] some
particular solutions for these types of non-linearity are considered.
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In this paper the differential equation with the following type of cubic non-linearity

a.z þ b1z þ b3zðz%zÞ ¼ eZðz; ’z; ccÞ ð1Þ

and with initial conditions

zð0Þ ¼ z0; ’zð0Þ ¼ 0 ð2Þ

is considered. z is a complex function, %z the complex conjugate function, a; b1 and b3 are constant
coefficients and eZ is a small function dependent on the complex function and complex conjugate
function and their time derivatives. This type of non-linearity is of special interest as it describes
the non-linear elastic property of the rotor which represents the fundamental working element of
most machines. The initial conditions correspond to the case without impact. In Ref. [11]
an approximate analytical solution of the pure-cubic complex differential equation (in Eq. (1)
it is b1 ¼ 0) with initial conditions (2) is given.
In this paper the extension of the previous results is carried out and an approximate analytical

solution is suggested for the general differential equation (1) with initial conditions (2). The exact
solution of the strong non-linear generating differential equation is introduced. The trial solution
of the differential equation with small non-linearity is assumed to have the form of the generating
solution but with time variable parameters. The trial solution satisfies some constraints but does
not satisfy the differential equation (1). Two types of procedures are suggested: one, the ordinary
elliptic Krylov–Bogolubov method of averaging [12,13] of the exact system of two first order
differential equations and the second, forming of two approximate first order differential
equations of motion assuming the first time derivative of the trial solution to be the same as for
the generating solution. Both solving procedures are applied to the case when the small function is
of the Van der Pol type. The exact numeric solution is compared with solutions obtained applying
both suggested methods.

2. The elliptic Krylov–Bogolubov method

The elliptic Krylov–Bogolubov method gives the approximate solution of Eq. (1) based on the
introduction of time variable parameters in the generating solution of the same differential
equation with e ¼ 0 called the generating differential equation.
For the case when the small non-linearities are neglected, i.e., e ¼ 0 the generating differential

equation is obtained

a.z þ b1z þ b3zðz%zÞ ¼ 0: ð3Þ

For the initial conditions (2) the closed-form solution of Eq. (1) is

z ¼ ðA þ iBÞcnðot;mÞ � ðA þ iBÞcn; ð4Þ

where cn is the Jacobi elliptic function [14] with parameter o

o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1 þ b3ðA2 þ B2Þ

a

s
ð5Þ
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and modulus of the Jacobi elliptic function

m ¼
b3ðA2 þ B2Þ
2ao2

: ð6Þ

For the initial conditions (2) it is A ¼ A0 and B ¼ B0 as z0 ¼ A0 þ iB0 where i ¼
ffiffiffiffiffiffiffi
�1

p
is the

imaginary unit. It is obvious that the parameter o and the modulus of the Jacobi elliptic function
m depend on the initial values A0 and B0:
Based on the generating solution (4) the trial solution of Eq. (1) is formed:

z ¼ ðAðtÞ þ iBðtÞÞcnðc;mÞ � ðA þ iBÞcn; ð7Þ

where AðtÞ and BðtÞ are time dependent and the corresponding functions o (5) and m (6)
which depend on A and B are also time dependent. The argument of the elliptic function is
cðtÞ ¼

R t

0 oðsÞ ds: The task of finding the solution zðtÞ is transformed into finding the functions
AðtÞ and BðtÞ so that expression (7) satisfies Eq. (1). Due to the Krylov–Bogolubov procedure the
function zðtÞ has to satisfy the constraint that the first time derivative of the trial solution must
have the same form as for the generating solution (4)

’z ¼ ðA þ iBÞocnc; ð8Þ

where ðcÞ ¼ @=@c is the derivative with respect to the argument c: It is satisfied for

ð ’A þ i ’BÞcnþ ðA þ iBÞ ’mcnm ¼ 0; ð9Þ

where ðmÞ ¼ @=@m is the derivative with respect to the modulus of Jacobi elliptic function and
’m ¼ ð@m=@AÞ ’A þ ð@m=@BÞ ’B: The time derivative of Eq. (8) is

.z ¼ ð ’A þ i ’BÞocnc þ ðA þ iBÞ ’ocnc þ ðA þ iBÞo2cncc þ ðA þ iBÞo ’mcncm; ð10Þ

where ’o ¼ ð@=@AÞ ’A þ ð@=@BÞ ’B; and the derivatives with respect to the argument and to the
modulus of Jacobi elliptic function, are cncc ¼ @cnc=@c and cncm ¼ @cnc=@m; where cncm ¼
�ðsnm dnþ sn dnmÞ: Substituting relations (7) and (10) into Eq. (1) and separating the real and
imaginary terms, a system of two first order differential equations is obtained:

að ’Aocnc þ A ’ocnc þ Ao ’mcncmÞ ¼ ReðeZÞ;

að ’Bocnc þ B ’ocnc þ Bo ’mcncmÞ ¼ ImðeZÞ: ð11Þ

According to Eqs. (9) and (11) and using the form of the time derivatives of functions (5) and (6)
with time variable functions, the following system of two first order coupled differential equations
is obtained:

a ’Aðocnccnm � cn cnc
ao3

b1
� ocn cncmÞ ¼ ReðeZÞcnm;

a ’Bðocnccnm � cn cnc
ao3

b1
� ocn cncmÞ ¼ ImðeZÞcnm; ð12Þ

where eZ � eZððA þ iBÞcn; ðA þ iBÞocnc; ccÞ: The differential equations (12) represent the
transformed version of the differential equation (1) and the solutions AðtÞ and BðtÞ form the
exact solution (7) of the differential equation (1). Unfortunately, it is impossible to find the closed
form solution for system (12). It is at this point the usual averaging procedure is introduced. The
period of averaging corresponds to the period of the Jacobi elliptic functions. That is, Eq. (12) is
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transformed to the averaged system

a ’Ao/cnccnm � cn cncmS ¼ /ReðeZÞcnmS;

a ’Bo/cnccnm � cn cncmS ¼ /ImðeZÞcnmS; ð13Þ

where / �S ¼ ð1=ð4KÞÞ
R 4K
0 ð�Þ dc; where K is the total elliptic integral of the first kind [15].

Solving the system of differential equations (13) the time variable functions AðtÞ and BðtÞ are
obtained. Substituting the solution AðtÞ and BðtÞ into relations (5) and (6) the expressions for o
and m are denoted.
The suggested procedure is valid for all types of small function, but it has some disadvantages.

The averaging procedure for the differential equations (13) is not an easy task as is discussed in
the paper of Coppola and Rand [13]. Besides, in general, for the case when the small function on
the right-hand side of Eq. (1) is a non-symmetrical one (corresponding to its real and imaginary
part) the averaged system of differential equations (13) is a non-linear coupled system of
differential equations from which an analytical solution cannot possibly be obtained and the
discussion based only on the numerical experiment.

3. The approximate first order differential equations

To avoid the disadvantages of the elliptic Krylov–Bogolubov method a new approximate
procedure for solving the differential equation (1) is introduced. It is based on forming a system of
two approximate first order differential equations. In this procedure the trial solution is assumed
in the same form (7) as in the previous method and has to satisfy Eq. (1). The first time derivative
of solution (7) is assumed in the form (8) and the other terms are neglected. Relating to this
assumption the first order differential equations obtained by substitution of Eq. (7) and the
second time derivative of Eq. (8) into Eq. (1) are approximate ones. Namely, they are not forced
to satisfy relation (9).
For simplicity, introduce solution (7) of Eq. (1) in the polar form

z ¼ CðtÞexpðiaðtÞÞcnðc;mÞ � C expðiaÞcn; ð14Þ

where CðtÞ and aðtÞ are time-dependent functions, cðtÞ ¼
R t

0 oðCÞdt is the argument of the elliptic
function cn and the function o and the modulus m of the Jacobi elliptic function are, respectively,

o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1 þ b3CðtÞ2

a

s
; m ¼

b3CðtÞ2

2ao2
: ð15Þ

In relation (17) the functions o and m are time dependent as is C � CðtÞ: The task of finding the
solution zðtÞ is transformed into finding the functions CðtÞ and aðtÞ so that expression (14) satisfies
Eq. (1). Substituting Eq. (14) and its second time derivative into Eq. (1) and separating the real
and imaginary terms the system of two first order differential equations is obtained:

a ’Cðocnc þ Co0cnc þ Com0cncmÞ ¼ ReðeZ expð�iaÞÞ;

Ca’aocnc ¼ ImðeZ expð�iaÞÞ; ð16Þ

where Z � ZðC expðiaÞcn;Co expðiaÞcnc; ccÞ; ðcÞ ¼ @=@c is the derivative with respect to the
argument c; ðmÞ ¼ @=@m is the derivative with respect to the modulus of Jacobi elliptic function m
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and ð0Þ ¼ d=dC: Integrating the differential equations (16) for the initial conditions Cð0Þ ¼ C0 and
að0Þ ¼ a0 the functions CðtÞ and aðtÞ are obtained. The expressions for o and m are obtained by
substituting the solution CðtÞ into relations (15).
This type of differential equation (16) is very convenient for the case when the right-hand side

member of the first equation (16) vanishes.

4. Strong cubic non-linear Van der Pol differential equation with complex function

The differential equation of the Van der Pol type with complex function is

.z þ z þ zðz%zÞ ¼ egð17pz%zÞi’z; ð17Þ

where g and p are constants and e51 is a small parameter.
Let the differential equation (17) be transformed into the system of two first order differential

equations according to elliptic Krylov–Bogolubov procedure. For the small non-linear function
eZ ¼ egð1þ z%zÞi’z the real and the imaginary parts are

ReðeZÞ ¼ �egð17pðA2 þ B2Þcn2ÞBocnc;

ImðeZÞ ¼ egð17pðA2 þ B2Þcn2ÞAocnc: ð18Þ

The averaged differential equations (13) are

’A/cnccnm � cn cncmS ¼ �egB/ð17pðA2 þ B2Þcn2ÞcnccnmS;

’B/cnccnm � cn cncmS ¼ egA/ð17pðA2 þ B2Þcn2ÞcnccnmS: ð19Þ

Analyzing relations (19) it is obvious that dividing the equations gives A ’A ¼ �B ’B: It means that
for the initial conditions Að0Þ ¼ A0 and Bð0Þ ¼ B0 it is A2 þ B2 ¼ C20 ¼ const: According to

relations (5) and (6) it can be concluded that o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C20

q
¼ const:; m ¼ C20=2o

2 ¼ const:

Integrating the differential equations (19) for initial conditions (2) and using the aforementioned
conclusion the solution AðtÞ and BðtÞ is obtained.
According to Eq. (16) the approximate first order differential equations which correspond to

the differential equation (17) are

a ’Cðocnc þ Co0cnc þ Com0cncmÞ ¼ 0;

’a ¼ egð17pC2cn2Þ: ð20Þ

For the initial condition Cð0Þ ¼ C0 the solution of the first equation ð20Þ1 is C ¼ C0 ¼ const: The
second equation ð20Þ2 transforms to

’a ¼ egð17pC20cn
2ðo0t;m0ÞÞ; ð21Þ

where o0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C20

q
¼ const: and m0 ¼ C20=2ð1þ C20Þ ¼ const: Integrating Eq. (21) for the initial

condition að0Þ ¼ a0 it is

a ¼ a0 þ eg 18
pC20
m0

ð1� m0Þ
� �

t7
pC20

m0o0
Eðo0t;m0Þ

� 	
; ð22Þ
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where Eðo0t;m0Þ is the incomplete elliptic integral of the second kind [16]. Finally, the
approximate solution of Eq. (17) is

z ¼C0 expðia0Þcnðo0t;m0Þ

	 exp egi 18
pC20
m0

ð1� m0Þ
� �

t7
pC20

m0o0
Eðo0t;m0Þ

� 	
 �
: ð23Þ

This solution can be discussed at length. Using the polar form of the solution it can be concluded
that the term C0 expðia0Þcnðo0t;m0Þ defines the modulus of the complex function. This value does
not depend on the small value eg: The modulus is a periodically time variable function. The period
of variation is T ¼ 4Kðm0Þ=o0; where Kðm0Þ is a complete elliptic integral of the first kind [15].
The argument of the complex function is

b ¼ t8
pC20
m0

ð1� m0Þt8
Eðo0t;m0Þ

o0

� �
: ð24Þ

The argument varies due to small function eg: As it is a small value the argument varies slowly in
time. The variation is approximately linear in time. Namely, expanding the function Eðo0t;m0Þ in
series [16] and assuming the first two terms the function b is approximately bEtð17pC20Þ: Three
separate cases appear: (a) p > 0; (b) po0; (c) p ¼ 0: For p ¼ 0; when the small function is linear, it
is b ¼ t and the approximate analytic solution of Eq. (17) is

z ¼ C0 expðia0Þcnðo0t;m0ÞexpðegitÞ: ð25Þ

For p > 0 the angle bEtð1þ pC20 Þ increases during the time and observing in x–y plane the
argument increases in a positive direction.
For po0 it is bEtð1� pC20Þ: The variation of angle depends on the value of pC20 : For pC20 ¼ 1 it

is bE0 and the argument is constant. For pC20o1 it is b > 0 and for pC20 > 1 it is bo0: The
direction of increasing of the argument of the complex function depends on the sign of b: For
b > 0 it is in one direction (positive) and for bo0 it is in the opposite direction (negative
direction).
This discussion is of special interest for rotor dynamics. Namely, relation (23) corresponds to

the motion of the rotor centre during vibrations described with differential equation (17). The
modulus of complex function corresponds to the radial position of the rotor centre and the
argument to the angle position of the centre of the rotor.

4.1. Example

Consider a numerical example. The parameter value is p ¼ 1 and initial conditions are

z0 ¼ 0:5ð1þ iÞ; ’z0 ¼ 0: ð26Þ

Separating the real and the imaginary terms in Eq. (26) using the complex function z ¼ x þ iy
where x and y are time-dependent functions and i is the imaginary unit, a system of two second
order differential equations is obtained:

.x þ x þ xðx2 þ y2Þ ¼ �0:01 ’yð1þ x2 þ y2Þ;

.y þ y þ yðx2 þ y2Þ ¼ 0:01 ’xð1þ x2 þ y2Þ: ð27Þ
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The system of coupled differential equations (27) is solved numerically applying the Runge–Kutta
procedure. In Figs. 1 and 2 the numeric solution xN and yN is plotted.
In Figs. 1 and 2, also, the approximate analytic solution xA and yA of the system of differential

equations

’A/cnccnm � cn cncmS ¼ �0:01B 1þ 1
2
cn2

� 

cnccnm

� �
;

’B/cnccnm � cn cncmS ¼ 0:01A 1þ 1
2
cn2

� 

cnccnm

� �
; ð28Þ

obtained applying the elliptic Krylov–Bogolubov method is shown.
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Fig. 1. x � t diagrams obtained: numerical ðxN Þ; applying the elliptic Krylov–Bogolubov method ðxAÞ and applying the
approximate equations ðxAAÞ:
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Fig. 2. y � t diagrams obtained: numerical ðyN Þ; applying the elliptic Krylov–Bogolubov method ðyAÞ and applying the
approximate equations ðyAAÞ:
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The approximate solution (23) xAA and yAA for the corresponding initial conditions (2) in the
polar form C0 ¼

ffiffiffi
2

p
=2 and a0 ¼ p=4 is

xAA ¼

ffiffiffi
2

p
2
cos

p
4
� 0:0015t þ 0:0245E

ffiffiffi
3

2

r
t;
1

6

 ! !
cn

ffiffiffi
3

2

r
t;
1

6

 !
;

yAA ¼

ffiffiffi
2

p
2
sin

p
4
� 0:0015t þ 0:0245E

ffiffiffi
3

2

r
t;
1

6

 ! !
cn

ffiffiffi
3

2

r
t;
1

6

 !
: ð29Þ

Comparing the exact numeric solution xN and yN in Figs. 1 and 2 with the approximate solution
xA and yA obtained by the averaging elliptic Krylov–Bogolubov method and the approximate
solution xAA and yAA; it can be concluded that both groups of approximate solutions are on the
top of the exact numeric solution. The elliptic Krylov–Bogolubov method gives better results but
requires a very complex calculating procedure. The second method gives satisfactory results and
due to its simplicity is more convenient to be applied in engineering practice.
In Fig. 3 the solution of Eq. (27) is plotted in x � y plane. The figure proves the statement of the

character of the solution for p > 0 as is discussed in the previous section.

5. Conclusions

1. Comparing the exact numeric solution and the approximate solution obtained applying the
elliptic Krylov–Bogolubov method for the second order differential equation with complex
function, it can be concluded that the difference for small initial conditions and not too long
time is negligible. The disadvantage of the method is its complexity and serious averaging
calculation.

2. The alternative analytic method is suitable for application only for the case when the non-
linearity is small and the time is short. It is preferable to the elliptic Krylov–Bogolubov because
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L. Cveticanin / Journal of Sound and Vibration 277 (2004) 815–824822



its simplicity. It is particularly convenient for the systems where the right-hand side member of
the first equation (16) vanishes. In spite of the estimation error the solution is usually very
convenient for qualitative analysis of the dynamic properties of some systems. It is
recommended for dynamical analysis of the rotors.

3. In the polar form solution of the Van der Pol differential equation the polar function C is
constant and also the frequency o and the modulus m of the Jacobi elliptic function are
constant values. These values depend on the initial value C0: The modulus of the complex
function z does not depend on the small value eg: The modulus of the complex function is a
periodical time variable function. The argument of the complex function depends on the small
parameter eg and on the parameter p; too. Depending on the value of parameter p and the
initial values a0 and C0 the argument of complex function may be constant or approximately
linearly time dependent.
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